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A predictive model for particulate-filled composite materials has been developed. The model 
uses a combination of finite element analysis and spatial statistical techniques; this combina- 
tion allows the results from finite element analysis to be applied to real materials. The model is 
applied to epoxy resin filled with glass spheres. Predicted values of stiffness are compared 
with experimental measurements, and excellent agreement is found. The model is used to 
investigate stress distributions and the results are compared with experimental observations of 
fracture under varying conditions; the fracture behaviour of these materials is significantly 
elucidated. 

1. I n t r o d u c t i o n  
Advancing technology is allowing the development of 
an increasing range of particulate-reinforced poly- 
mers. This development can be properly exploited 
only if it is matched with increasing understanding of 
the mechanical behaviour of these materials. A predic- 
tive model is required which allows the description of 
the properties of the composite material from the 
properties of the constituent materials. 

Finite element analysis allows the development of 
such a predictive model. We use finite element analysis 
in conjunction with a specially developed statistical 
model of particulate reinforced materials, which is 
described in detail elsewhere [1]. Results from our 
finite element analysis can thus be related to real 
materials. This paper presents results for epoxy resin 
containing hard, glass, particles. Results for soft, 
rubber, particles are presented in Part 2 [2]. The 
theoretical predictions shed considerable light on the 
widely reported experimental results from these 
materials. Predictive results for a range of constituent 
material properties will be presented in a future paper 
[31. 

Several authors have applied finite element analysis 
to composite materials. The problem of relating 
results from finite element analysis to the behaviour of 
real materials has been discussed by Adams [4]. Most 
applications, however, have been carried out at the 
macroscopic level, assuming homogeneous properties 
within a single layer of laminate. These applications 
include investigation of edge effects in laminated 
plates [5, 6], investigation of the effect of a hole [7], 
prediction of stress intensity factors [8] and calcula- 
tion of thermal stresses [9]. Application of finite 
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element analysis to the microscopic level of composite 
materials has previously necessitated gross assump- 
tions regarding the arrangement of the fibres [10-13] 
or spheres [14, 15]. Recently Termonia [16] has used 
finite differences to predict stiffness of short-fibre and 
particulate-filled polymers; good agreement between 
predictions and experimental data was found. How- 
ever, the material was modelled as simple cubic pack- 
ing of the filler. Our combination of spatial statistical 
techniques and finite element analysis takes account of 
real filler distributions, and allows logical application 
of the results of finite elment analysis to real com- 
posite materials. 

The failure of glass-filled epoxy resin has been 
extensively examined by several authors including 
Mallick and Broutman [17] and Spanoudakis and 
Young [18, 19]. Our theoretical predictions here may 
be compared with their experimental results. Stress 
distributions around a glass sphere in various polymer 
matrices have been experimentally examined, and 
predicted using finite element analysis, by Dekkers 
and Heikens [20-24]; their results are for very low 
volume fractions or single spheres. We can compare 
our theoretical predictions with their model. 

2. Analysis 
2.1. Finite e lement  model  
The development of the finite element model is shown 
in Fig. 1. Spherical particles of equal diameter are 
assumed to be randomly distributed within an infinite 
matrix. Finite element analysis is performed for a 
cylinder of resin, radius equal to half-height, R, con- 
taining a single sphere at its centre, radius r. This 
cylinder can be represented by the plane ABCD shown 
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in Fig. 1 using axisymmetric elements, the y-axis 
being the axis of symmetry. Finite element analysis is 
carried out for a 1 radian segment. The imposed con- 
ditions of deflection are shown in Fig. lb. The sides 
AB and AD remain stationary because these are lines 
of symmetry in the cylinder. The lines BC and CD 
remain parallel to their original directions arising 
from the equal and opposite forces of neighbouring 
material. 

A typical finite element grid is shown in Fig. 1 c. The 
elements used are eight-node quadrilateral axisym- 
metric elements, except at the centre of the sphere, A, 
where six-node triangular elements are used. The 
value of the sphere radius, r, was kept constant at 75 
units; the value of the cylinder radius, R, was varied 
between 85 and 170 units. Grids for all values of R are 
similar to that shown in Fig. lc, with fewer elements 
for smaller values of R. The grids were carefully 
derived from coarser grids and checked for validity by 
continuity of stress, especially around the interface, as 
described below, and by the absence of shear stress 
around the outside of the grid. 

2.2. Finite e l e m e n t  c a l c u l a t i o n s  
The finite element analysis package used is LUSAS, 
running on an ICL 2988 computer. Analysis was 
carried out for grids with various values of radius ratio, 
R/r .  Linear elastic properties for epoxy resin and glass 
or rubber spheres were used. The shape of the deformed 
grid, shown in Fig. lb, was achieved by loading the 
grid by prescribed displacement in the y-direction of 
the nodes along CD. Constraint equations were used 
for the nodes along BC constraining the x-displace- 
ments to be equal. 
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Results from LUSAS include stresses in three dimen- 
sions and the reactions to earth for nodes around the 
outside of the grid. Post-processing of results was 
added to transform the stresses around the interface to 
polar coordinates. The average stress applied to the 
material is calculated from the sum of the reactions to 
earth for the nodes along CD, for the 1 radian seg- 
ment. All stress results are presented as stress con- 
centration factors, the ratio of that stress to the 
average applied stress. The Youngs modulus, E, is 
calculated from the applied strain and the average 
applied stress. Further stress results output by LUSAS 
include principal stresses and Von Mises stress. The 
Von Mises stress, av, is defined by 

av = (1/2 (ax - ay) 2 + 1/2 (ay - az) 2 

~a2 i1/2 + 1/2 (az - a x )  2 "Jr" ~ - x y . ,  

where the axes x, y, z are defined in Fig. l. 
The yield of polymers is best described by the modi- 

fied Von Mises yield criterion [25]; yield occurs when 
the von Mises stress, defined above, reaches a critical 
value, the magnitude of that critical value being addit- 
ionally dependent on the hydrostatic stress. Hydro- 
static, stresses are easily calculated from the principal 
stresses in the LUSAS output. 

2.3. Statistical Model 
The statistical model has been described in detail else- 
where [1]. The model is based on the calculation of the 
distribution of the distance from a sphere centre to the 
boundary of its Voronoi cell; the Voronoi cell is the 
volume around a sphere closer to that sphere than any 
other sphere. The spheres are assumed to be randomly 
distributed, but the spheres are not allowed to overlap; 
that is, they are distributed as a Gibbs hard-core 
process. 

Results from a single finite element grid cannot be 
directly related to a volume fraction of spheres. Analy- 
sis must be carried out for the primary grid, whose 

Figure l Development of the finite element model. (a) Representa- 
tion of sphere in a cylinder using axisymmetric elements. (b) Com- 
parison of ( - - )  original and (...) deformed grids. (c) Typical finite 
element grid. 
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Resin matrix Glass sphere Reference 

Young's Poisson's Young 's  Poisson's 
modulus ratio modulus ratio 
(GPa) (GPa) 

3.01 0.394 76.0 0.23 [26] 
3.208 0.35 73.1 0.21 [27] 

dimensions are directly related to the required volume 
fraction, and two additional grids for calculation of 
the dispersion factors. These factors must be applied 
for exact results to take into account that in real 
material the interparticle distances are variable. Fur- 
ther, the model of  the material as consisting of cylin- 
ders of varying size gives rise to two different predicted 
values for a property. The cylinders contribute dif- 
ferently to the overall property of the material for 
different properties, and according to the assumption 
made regarding the distribution of load to the cylin- 
ders. We have implemented two bounds, namely that 
the cylinders are at equal stress or equal strain. We 
find these bounds to be very close, and our theoretical 
predictions are presented as these bounds. 

2.4. I m p l e m e n t a t i o n  
The implementation has been fully described else- 
where [1]. Finite element analysis was carried out for 
grids with cylinder radius, R, varying between 85 and 
170 units; the sphere radius was constant at 75 units. 
Additional grids were analysed to allow the calcula- 
tion of the dispersion factors. Volume fractions of 
spheres analysed thus varied between 5.72% and 
49.19%, around the limit of the theoretical analysis 
[1]. The material properties used are shown in Table I. 
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Figure 2 Variation of Young's modulus, E, with volume fraction for 
epoxy resin filled with glass spheres. (t) Equal stress, (O) equal 
strain, predicted values using our model. (z~) Predicted values 
assuming regular hexagonal array; (x) experimental values, with 
error bars [26]. 

The results from LUSAS were manipulated for 
the calculation of overall Young's modulus, E; these 
predictions are directly comparable with experimental 
results. Stress systems were examined using contour 
diagrams produced by the LUSAS graphics package, 
MYSTRO. These diagrams are most illuminating, but 
it must be emphasized that the numerical results 
shown by them are inaccurate because dispersion 
factors have not been applied; the contour diagrams 
do not show the correct results because the statistical 
variability of  the interparticle distance has not been 
taken into account. Precise values of stress concentra- 
tion factor at the points of interest indicated by the 
contour diagrams were calculated and are presented 
graphically as functions of volume fraction. These 
values of stress concentration factor have been cal- 
culated using our model, with the application of dis- 
persion factors which take into account the effect of 
the statistical variability of the interparticle distance. 
These predictions may be compared with experimental 
results describing yield and fracture of these materials. 

3. Young ' s  m o d u l u s  
Careful measurements of values of Young's modulus 
of epoxy resin reinforced with glass spheres are avail- 
able in the literature [26]. Finite element analysis was 
carried out for constituent material properties in 
that reference (Table I). Predicted values of Young's 
modulus are compared with those experimental values 
in Fig. 2. Agreement is excellent throughout the range 
of volume fraction. Fig. 2 also includes predicted 
results assuming regular arrangement of spheres [15]. 
Agreement is far closer for our model, particularly at 
higher volume fractions. Further, our model does not 
include the inherent logical inconsistency of  using 
axisymmetric elements for a regular arrangement [1]. 
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Figure 3 Variation of Young's modulus, E, with volume fraction for 
epoxy resin filled with glass spheres. (t) Equal stress, (o) equal 
strain, predicted values. (x) Experimental values, with error bars 
[27]. 
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Figure 4 Contours of stress concentration factor of applied stress, 
ayy, for primary grid for epoxy resin filled with 21.1% volume 
fraction of glass spheres. 

This excellent agreement allows confident further 
predictions to be made using our model. 

Further comparison between our predictions and 
experimental values of Young's modulus is presented 
in Fig. 3. The experimental values are from Maxwell 
[27], obtained at various temperatures, that is for 
various values of matrix modulus. The Young's 
modulus plotted is therefore the ratio of the composite 
to matrix moduli, averaged for twelve different tem- 
peratures; values varying from the mean by more than 
two standard deviations were discarded. The error 
bars denote one standard deviation. Reasonable agree- 
ment is found throughout the range of volume 
fraction. 

4. S t ress  d i s t r i b u t i o n  
4.1. Concentrat ion of direct stress 
Stress distributions are examined using constituent 
material properties measured by Maxwell [27], shown 
in Table I. The applied stress is a direct ayy stress; a 
contour diagram for the concentration of this stress in 
the resin is shown in Fig. 4. This contour diagram is 
for the primary grid corresponding to 21.1% volume 
fraction occupied by spheres. 

Maximum stress concentration is found in the resin 
just above the pole of the sphere. Examination of 
other contour diagrams confirmed that this is the 
maximum principal stress. This position is in agree- 
ment with previous theoretical results and experi- 
mental observations [19]. The precise position and 
value of this maximum stress concentration factor 
varies with volume fraction, as shown in Fig. 5. The 
magnitude of the stress concentration of applied stress 
increases with increasing volume fraction of glass. 
This result is not surprising and may be described as 
arising from increasing interaction between the stress 
fields around particles as their separation decreases. 

The position of maximum stress concentration 
factor of applied stress varies as shown in Fig. 5. At 
high volume fractions its position is at the edge of 
the grid, that is midway between particles. At lower 
volume fractions the position is relatively closer to the 
particle in the cylinder under analysis, that is further 
away from the adjacent particle. Taking into account 
the varied distances between adjacent particles for 
different volume fractions, that maximum distance 
between the position of stress concentration and 
the adjacent particle was calculated. This distance 
decreases rapidly with increasing volume fraction; 
expressed in terms of the sphere radius its value is 
decreased from 243% at the lowest volume fraction 
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Figure 5 Variation of stress concentration factor of 
applied stress, a~:~., with volume fraction, and relative 
distance, d, between sphere pole and edge of grid, 
for epoxy resin filled with glass spheres. (e)  Equal 
stress, (o) equal strain, stress concentration factor. 
(x) Position d. 
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Figure 6 Variation of stress concentration factors of interface stresses, in polar coordinates, for primary grid for epoxy resin filled with 2 1 . 1 %  

glass spheres. (a) Radial and shear stresses: (13) radial stress in resin; (o)  shear stress in resin; ( + )  radial stress in glass; (x) shear stress in 
glass. (b) Tangential stresses: (o)  tangential stress in resin; (e)  tangential stress in glass. 

analysed (5.72%), to 9.3% at the highest volume frac- 
tion analysed (49.2%). 

4.2. Stresses at the interface 
Stresses around the interface were transformed to 
polar coordinates using the notation shown in Fig. 1. 
Results for the same primary grid, volume fraction 
21.1%, are shown in Fig. 6. Radial and shear stresses 
on either side of the interface, in the glass and resin, 
are identical, as required. Tangential stresses in the 
two materials are not identical, and are not required to 
be identical. The excellent agreement in radial and 
shear stresses around the interface is a stringent test 
for the validity of the finite element grid. Substantial 

stress is transferred to the glass sphere (Fig. 6). This 
leads to the sharp increase in stiffness with volume 
fraction (Fig. 2), which has been found to be in 
excellent agreement with experimental results. 

Maximum radial stress is at the pole of the sphere 
where it is the O-yy stress; variation of the value of  this 
stress concentration factor with volume fraction is 
similar to that of the maximum stress concentration 
factor shown in Fig. 5. Radial stress is tensile at the 
pole of the sphere and compressive at the equator; the 
zero position, at 0 = 68 ~ is identical for all volume 
fractions. There is a maximum in radial-tangential 
shear stress at 0 = 42.2 ~ for this grid. Both the value 
and position of this stress concentration factor vary 
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Figure 7 Variation of stress concentration factor of maxi- 
mum shear stress at the interface, and position, 0, with 
volume fraction, for epoxy resin filled with glass spheres. 
( e )  Equal stress, (o)  equal strain, stress concentration 
factor. (x) Position 0. 
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Figure 8 Contours of stress concentration factor of Von Mises 
stress, av, for primary grid for epoxy resin filled with 16.3 % volume 
fraction of glass spheres. 

with volume fraction, as shown in Fig. 7. The absolute 
value of this stress concentration factor decreases with 
increasing volume fraction. This decrease is explained 
by description of the source of this stress concentra- 
tion, namely the difference in moduli between the 
particle and its surrounding material. As the volume 
fraction of spheres increases this difference decreases, 
so the magnitude of the stress concentration decreases. 
We note, however, that the magnitude of  this decrease 
is far smaller than the magnitude of the increase for 
the concentration of  applied stress, by about  a factor 
of  four. At high volume fractions the site of  this 
maximum concentration of shear stress moves closer 
to the pole of  the sphere. 

Stresses around the interface of  spherical particles 
have previously been considered for a single hard 
particle [23]. For a poorly bonded interface they 
postulate that a crack will form around the interface 
for tensile radial stress. Using finite element analysis, 
for a glass sphere in epoxy resin, using constituent 
material properties very close to those used here, they 
predicted that the interfacial crack should grow to an 
angle 0 = 68 to 70 ~ depending on the friction remain- 
ing in the debonded interface. The experimental value 
was measured to be about  60 ~ . These results are in 
agreement with our predicted value of  0 = 68 ~ con- 
stant for all volume fractions. 

Tensile radial stress at the interface causes debond- 
ing, as observed by Dekkers and Heikens [23]. The 
magnitude of  the stress concentration of radial stress 
at the pole is not much smaller than the maximum 
stress concentration of  applied stress (Figs 5 and 6), 
so, for tensile loading, debonding from the pole would 
be expected. We note that for applied tensile stress the 
radial stress at the equator  is compressive (Fig. 6). 
This stress would be tensile if the applied stress was 
compression; although the absolute magnitude of this 
stress concentration factor is around an order of  mag- 
nitude smaller than at the pole it could be sufficient to 
cause debonding from the equator of  the sphere under 
conditions of  applied compression. 
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Figure 9 Variation of stress concentration factors of Von Mises 
stress with volume fraction for epoxy resin filled with glass spheres. 
(e) Equal stress, (O) equal strain, stress concentration above pole. 
(n) Equal stress, (D) equal strain, stress concentration at interface. 

4.3.  C o n c e n t r a t i o n  o f  y i e l d  s t ress 
The Von Mises stress, as defined in Section 2.2 above, 
is calculated by LUSAS and can be output as a 
counter diagram; an example, for the primary grid 
corresponding to 16.3% volume fraction, is shown in 
Fig. 8. Two positions of  maximum von Mises stress 
are found; the first in the resin above the pole of  the 
sphere, near but not precisely at the same position as 
the maximum direct stress concentration (Fig. 4); the 
second at the interface at 0 = 42 ~ near but not pre- 
cisely at the same position as the maximum shear 
stress at the interface (Fig. 7). The values of  these 
stress concentration factors vary with volume frac- 
tion, as shown in Fig. 9. Their positions vary in the 
same directions as the positions of  the associated con- 
centrations of  direct stresses (Figs 5 and 7). Fig. 9 
shows that the magnitudes of  the two concentrations 
of  Von Mises stress vary with volume fraction in the 
same way as the associated stress concentrations, 
although the range of  variation is very small. The 
maximum above the pole is greater at high volume 
fractions, but at low volume fractions, below around 
12%, the maximum at the interface is greater. There is 
a discontinuity in the curve where the position of 
maximum Von Mises stress above the pole moves 
nearer to the particle from the edge of the grid, 
between volume fractions 16.28% and 21.13%. 

Dekkers and Heikens [24] observed shear band 
formation for very low volume fractions of  glass beads 
in various polymer matrices. They found shear band 
formation at the interface, at 0 = 45 ~ Our results 
(Fig. 9) show that at low volume fractions the maxi- 
mum concentration o fVon  Mises stress is at the inter- 
face, at 0 = 42 ~ Our model is in agreement with their 
experimental observations. 

The Von Mises stress at which yield occurs is depen- 
dent on the hydrostatic stress [25]. The hydrostatic 
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Figure 10 Fracture surface of a rubber-toughened epoxy resin filled with well-bonded glass spheres showing crack growth around the pole 
and resin smearing. The specimen was fractured at - 7 0 ~  (from Maxwell [27]). (a) Low magnification, (b) high magnification. 

stresses at the points of maximum Von Mises stress 
were calculated. For the application of tensile stress 
the hydrostatic stress was tensile. The stress con- 
centration at the site above the pole varied between 
about 0.8 and 1.8 over the range of volume fraction. 
The hydrostatic stress concentration at the interface 
site is about 0.2 less than that at above the pole 
throughout the range of volume fraction. Both values 
remain almost constant up to around 20% volume 
fraction, but increase rapidly at higher volume frac- 
tions. The maximum concentration of hydrostatic 
stress in the matrix is at the pole of the sphere. 

The variation of compressive yield strength with 
volume fraction was investigated by Mallick and 
Broutman [17]. They found that the compressive yield 
strength increases with increasing volume fraction of 
glass; the magnitude of this increase is hard to assess 
from their reported results, but the yield strength 
at 19% volume fraction of glass spheres appears 
about twice that of unfilled resin. The value appears 
unchanged between volume fractions 19% and 28%, 
but then increases again for 36%. The yield point is 
less distinct at high volume fractions. We believe this 
behaviour can be explained by examination of our 
predictions in Fig. 9. The tests were carried out in 
compression, so the hydrostatic stress concentration 
would increase the stress required for yield to occur. 
Fig. 9 shows that at high volume fractions yield would 
occur above the pole. There is a slight increase in the 
stress concentration with increasing volume fraction, 
but a large increase in the hydrostatic stress concentra- 
tion; yield would therefore occur at higher applied 
stress with increasing volume fraction, as found. At 
lower volume fractions hydrostatic stress hardly 
changes with volume fraction. Fig. 9 shows that yield 
would occur at the interface, and the value of this 
stress concentration factor decreases with increasing 
volume fraction; yield would therefore also occur at 
higher applied stress with increasing volume fraction, 
as found. We postulate that the intermediate region, 
where the compressive yield strength appears constant 
with increasing volume fraction, corresponds to the 
crossover point for the yield positions shown in Fig. 9, 
noting that this crossover would be expected at a 
higher volume fraction than shown in Fig. 10 because 
the hydrostatic stress above the pole is always greater 
than that at the interface. 

5. Frac ture  b e h a v i o u r  
The fracture of epoxy resin reinforced with glass 
spheres under various conditions has been studied by 
Spanoudakis and Young [18, 19], and Maxwell [27]. 
Their observations of fracture behaviour may be 
correlated with results from our model. 

Crack growth is generally considered to be attracted 
to the position of maximum direct stress. Our model 
predicts that the position of maximum direct stress is 
above the pole (Fig. 5). These predictions correlate 
with experimental observations, shown in Fig. 10. For 
a well-bonded sphere, at low volume fractions, crack 
growth is attracted to the resin above the pole of the 
sphere (Fig. 10a). Smearing of resin around the pole 
of the sphere is observed (Fig. 10b). This fracture 
appearance contrasts with that observed for crack 
growth in epoxy resin containing poorly bonded glass 

Figure 11 Fracture surface of epoxy resin filled with poorly bonded 
glass spheres showing crack growth towards the equator (from 
Maxwell [27]). 
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Figure 12 Fracture surface of  a rubber-toughened epoxy resin filled with bonded glass spheres tested at high temperature showing domes 
of  spheres. The specimen was fractured at 50 ~ C (from Maxwell [27]). (a) Low magnification, (b) high magnification. 

particles; crack growth is found to be attracted to the 
equator of the sphere (Fig. 11). The poorly bonded 
sphere must result in similar stress distribution in the 
resin to that for a hole, considered in Part 2 [2]; the 
site of maximum stress concentration is found to be at 
the equator of the sphere. Our predictions have been 
successfully used to describe the observed different 
fracture behaviour arising from the adhesion. 

The amount of resin smearing around the pole of 
the well-bonded sphere would be dependent on the 
position of the crack with respect to the sphere. Our 
results (Section 4.1) have shown that at low volume 
fractions the maximum distance is much further away 
from a sphere than for high volume fractions. Thus 
our model predicts that more smearing would occur at 
low volume fractions, when crack growth could occur 
with no spheres visible in the fracture surface. Greater 
smearing at low volume fractions has been observed 
[18]. 

Change in fracture appearance has also been 
observed with change in constituent material proper- 
ties for well-bonded glass spheres [27]. The usual 
fracture appearance for well-bonded spheres has been 
shown in Fig. 10; crack growth is attracted above the 
pole [19]. This appearance contrasts with that found 
for tests at high temperature, shown in Fig. 12; this 
test was carried out at 50 ~ C, resulting in a decrease in 
resin stiffness of around 35%. The crack appears to 
have grown towards the interface, leaving a dome of 
sphere visible on the fracture surface. 

We note that this dome of sphere visible in the 
fracture surface seems to imply that crack growth has 
been attracted to the position of maximum concentra- 
tion of Von Mises stress at the interface, which varies 
in position from 0 = 42 ~ at low values of volume 
fraction to 0 = 14 ~ at high values of volume fraction. 
The magnitude of this stress concentration factor is 
dependent on the difference between the sphere pro- 
perties and the properties of the surrounding material, 
and would thus increase for softened resin at increased 
temperature. We postulate that the change in fracture 
appearance with increasing temperature may imply 
that crack growth is attracted to the position of maxi- 
mum Von Mises stress, which is predicted by our 
model to change position from above the pole to the 
interface with increasing temperature. Further experi- 
mental work is required to investigate this hypothesis. 

The mechanism of crack growth may be further eluci- 
dated by future improvement of the finite element 
model incorporating non-linear material properties. 

6. Concluding remarks 
Our predictive model for particulate-filled composite 
materials containing hard particles has produced inter- 
esting and useful results. The finite element model has 
been validated by the excellent agreement in values of 
stiffness between our predictions and careful experi- 
mental measurements. The predicted stress distribu- 
tions are validated by the exact matching of stresses 
around the interface. Predicted stress distributions for 
epoxy resin filled with glass spheres have been success- 
fully correlated with previous models and experimental 
observations. The successful description of the frac- 
ture appearance of these materials under various con- 
ditions leads to better understanding of their fracture 
behaviour, which will allow more confident use of 
these materials under different conditions. 
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